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Abbreviations used

ACSL3: Acyl-CoA synthetase long-chain family member 3

AXL: AXL receptor tyrosine kinase

BaP: Benzo[a]pyrene

DC: Dendritic cell

DEP: Diesel exhaust particle

DNMT: DNA methyltransferase

ETS: Environmental tobacco smoke

Foxp3: Forkhead box protein 3

HAT: Histone acetyltransferase

HDAC: Histone deacetylase

IL: Interleukin

MAOB: Monoamine oxidase type B

miRNA: MicroRNA

NF-kB: Nuclear factor of kappa light polypeptide gene enhancer in

B-cells 1

PAH: Polycyclic aromatic hydrocarbon

PM: Particulate matter

PTPRO: Protein tyrosine phosphatase, receptor type, O

TLR: Toll-like receptor

TSA: Trichostatin A
Asthma, a chronic inflammatory disorder of the airway, is
influenced by interplay between genetic and environmental
factors now known to be mediated by epigenetics. Aberrant
DNA methylation, altered histone modifications, specific
microRNA expression, and other chromatin alterations
orchestrate a complex early-life reprogramming of immune
T-cell response, dendritic cell function, macrophage activation,
and a breach of airway epithelial barrier that dictates asthma
risk and severity in later life. Adult-onset asthma is under
analogous regulation. The sharp increase in asthma prevalence
over the past 2 or 3 decades and the large variations among
populations of similar racial/ethnic background but different
environmental exposures favors a strong contribution of
environmental factors. This review addresses the fundamental
question of whether environmental influences on asthma risk,
severity, and steroid resistance are partly due to differential
epigenetic modulations. Current knowledge on the epigenetic
effects of tobacco smoke, microbial allergens, oxidants, airborne
particulate matter, diesel exhaust particles, polycyclic aromatic
hydrocarbons, dietary methyl donors and other nutritional
factors, and dust mites is discussed. Exciting findings have been
generated by rapid technological advances and well-designed
experimental and population studies. The discovery and
validation of epigenetic biomarkers linked to exposure, asthma,
or both might lead to better epigenotyping of risk, prognosis,
treatment prediction, and development of novel therapies.
(J Allergy Clin Immunol 2010;126:453-65.)
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Asthma is still poorly understood. It is not one disease but many,
with some known but many unidentifiable causes underlying its
development and manifestation. As such, it is referred to as a
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complex disease for which a subject’s risk is believed to be
determined by a complicated interplay of one’s genetics and
environmental exposures. The genetic1 or environmental2 expla-
nations of asthma have been discussed and debated for many years.
Our recent understanding of epigenetics as a mechanism mediat-
ing gene-environment interaction offers new opportunities to ad-
vance novel concepts and re-examine established ones about this
disease.3,4 In this review I will first discuss some key features of
asthma, the basic principles of epigenetic regulation, and theories
of phenotype/developmental plasticity before summarizing recent
advances in environmental epigenetics that influence asthma path-
ogenesis. I will address future challenges and opportunities for the
field, focusing on those that might help prevent asthma.

ASTHMA: MAIN FEATURES AND DISEASE EFFECT
Asthma, a chronic inflammatory disorder of the airway, is

characterized by recurring episodes of airflow obstruction,
wheezing, coughing, and shortness of breath.5 However, its symp-
toms are highly variable, and the causes of asthma and their inter-
actions remain largely uncertain.6 Asthma can cause intermittent
episodes or follow a more chronic course, can occur with or with-
out atopy, usually has its onset in childhood but sometimes is not
recognized until adulthood, and can be corticosteroid sensitive or
resistant. The heterogeneity of asthma suggests it is influenced by
a multitude of factors, including genetics, family history, age, sex,
socioeconomic status, race and/or ethnicity, and a host of recog-
nized environmental factors.

The prevalence of childhood and adult-onset asthma has
increased dramatically during the last 2 to 3 decades in both
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developed and developing countries,7 although there are signs of a
possible leveling off of its prevalence.8 Worldwide prevalence es-
timates are between 100 and 150 million persons.9 This disorder
is clearly more prevalent in more developed countries, such as the
United States.10

Asthma has become a major health and economic burden for our
nation, disproportionately affecting minorities in inner-city com-
munities and creating concerns about major health disparities.11
IMMUNE CELL DYSFUNCTION AND AIRWAY

HYPERSENSITIZATION
Although the cause of asthma is multifactorial, the role of

specific T cells and their cytokines in the pathogenesis of allergic
asthma is now well recognized.12 The infiltration and accumula-
tion of polarized CD41 T helper (TH)2 cells, degranulated mast
cells, and eosinophils in the bronchial mucosa are the pathological
features of allergic asthma. Allergic asthma starts with an influx
of naive CD41 T cells and eosinophils into the bronchial mucosa.
The priming of the naive CD41 T cells to differentiate into proin-
flammatory TH2 cells instead of the infection-fighting TH1 cells in
the T-cell repertoire by allergen-activated dendritic cells (DCs) is
an important proposed mechanism.13 The progressive increase in
the commitment of CD41 T cells toward a TH2 phenotype is ac-
companied by an upregulation of the TH2 inflammatory cytokines,
such as IL-4, IL-5, IL-9, and IL-13, and an increased expression
of the transcriptional factor GATA-3.12 In parallel, the TH2 cells
shut off the expression of interferon-g (IFN-g) and other TH1
cytokines, such as IL-2. The recent discovery of TH17 in the
mediation of corticosteroid-resistant asthma sheds new light on
neutrophilic asthma.14 In short, a skewed programming of
CD41 T cells toward a TH2 or TH17 phenotype is a primary cause
of asthma and other immunodysfunctions of the airway.

As a counterbalance, naive CD41 T cells can differentiate into
forkhead box protein 3 (Foxp3)–positive regulatory T (Treg) cells
on transforming growth factor, b (TGF-b) stimulation. This cell
type confers immune tolerance, prevents autoimmunity, and
dampens allergic responses. It suppresses a TH2 response but
can promote a TH17 response. Thus induction of Treg cell differ-
entiation can ameliorate asthma through the suppression of a TH2
response, but this strategy might be limited by the potential acti-
vation of a TH17 response.15

In addition to the T-cell dysfunction, the interaction between
epithelial cells and DCs in the airways plays a crucial role in
determining the ability of inhaled allergens to initiate and
maintain allergic TH2 cell–mediated responses. On challenge
with an allergen, airway epithelial cells release chemokines and
cytokines to attract and activate the DCs, which migrate and settle
in the basolateral space of the airway epithelium. The DCs send
processes into the airway lumen and sample for allergens. Acti-
vated DCs then migrate to regional lymph nodes to interact
with regulatory cells and ultimately to stimulate TH2 cell produc-
tion by naive T cells. The DCs function as key antigen-presenting
cells that translate the signal from allergens on the airway surface
to T cells.16,17

Finally, an often forgotten cell type involved in asthma is the
alveolar macrophage. These cells are the predominant immune
effector cells residing in the airways. They play the dual role of
activating inflammatory responses sufficient to eliminate patho-
gens/allergens and suppressing the responses to allow for tissue
repair and remodeling after inflammatory insults to the airway.18,19
In their asthma exacerbation role they can be activated by allergens
to release inflammatory mediators and cytokines that amplify the
inflammatory response.19 In the suppressive role they can ingest ap-
optotic inflammatory or structural cells to reduce inflammation or
release cytokines and nitric oxide to promote TH1 development.19
GENETICS AND ASTHMA GENES
Asthma risk is influenced by genetics. Having a parent with

asthma doubles a child’s risk of asthma, and having 2 affected
parents increases the risk 4-fold.20 The greater concordance of
asthma among monozygotic twins compared with dizygotic twins
further supports this genetic influence.21 Findings from multiple
studies of the genetic association of asthma identified 43 replicated
asthma genes.22 The most frequently replicated of these genes are
tumor necrosis factor-a (TNFA); IL4; membrane-spanning 4-do-
mains, subfamily A, member 2 (Fc fragment of IgE, high affinity
I, receptor for beta polypeptide) (FCERB); ADAM metallopepti-
dase domain 33 (ADAM33); and glutathione-S-transferase pi
1 (GSTP1). Other genes identified are dipeptidyl-peptidase 10
(DPP10), neuropeptide S receptor 1 (GPR154), and PHD finger
protein 11 (PHF11) by means of linkage and fine mapping22 and
ORM1-like 3 (ORMD3), IL1RL1, and phosphodiesterase 4D
(PDE4D) by means of genome-wide association studies.23 Most
of these genes are associated with inflammation or a shift of the im-
mune system toward a TH2 response, whereas others are surrogate
biomarkers of inflammation. None alone is sufficient to predict or
explain asthma, and there is a high degree of heterogeneity in the
association of these genotypes among affected subjects or popula-
tions.22 These findings suggest that asthma genes interact in a com-
plex manner to regulate the risk and severity of the disorder and
that genetics alone is insufficient to fully explain intersubject or in-
terpopulation variations of the disease.1 The missing explanation
could reside in gene-environment interactions,24 which are now
believed to be mediated by epigenetic mechanisms.3-5,25
KEY ENVIRONMENTAL FACTORS ASSOCIATED

WITH ASTHMA
The rapid increase in the prevalence of asthma throughout the

world over only the past few decades,7 the huge variations ob-
served among populations with a similar racial/ethnic back-
ground but different environmental exposures,26 and the marked
increase in the frequency of occupational asthma2 all point to
the dominance of environmental factors in asthma’s etiology. Ad-
ditionally, several emerging hypotheses, such as the early-life
origin of asthma,4,27 the hygiene hypothesis,28,29 and the artificial
habitat hypothesis,30 all require explanations involving environ-
mental contributions to asthma’s etiology.

Living in a developed country is a strong risk factor for
asthma.10 This increased risk might, in part, be related to potent
indoor and outdoor allergens and irritants present in such an envi-
ronment. Outdoor allergens and air pollutants that have been
shown to trigger or exacerbate asthma include microbial and viral
pathogens, airborne particulates, ozone, diesel exhaust particles
(DEPs), pollens, outdoor molds (eg, Alternaria alternata), envi-
ronmental tobacco smoke (ETS), cold air, and humidity.2,31

Equally important are a host of indoor allergens that have been
demonstrated to induce airway inflammation, such as those de-
rived from dust mites, cockroaches, mice, and pets; particles gen-
erated from indoor combustion of tobacco, wood, and other plant
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fuels; and biological agents (eg, indoor endotoxin), products from
gram-positive bacteria, and 1,3-b-glucans from molds.2 Other en-
vironmental factors affecting asthma include pharmaceuticals
(eg, paracetamol32) and a variety of nutrients and dietary agents
(eg, omega-6 polyunsaturated fatty acids, saturated fat, vitamins
C and D, b-carotene, magnesium, selenium, sodium, and compo-
nents in a Mediterranean diet33). Worthy of note is that many of
these indoor and outdoor asthma inducers/triggers also have de-
monstrable reprogramming effects on the immature airway dur-
ing early life, leading to altered asthma risk in later life (see the
next section for further details).

Moreover, occupational asthma, which accounts for 5% to 15%
of cases of asthma in adult workers, has more than 250 suspected
causative agents,2 including isocyanates, flour, grain dust, air-
borne particles, colophony, latex, animal dander, aldehydes, and
wood dust.2,34,35 The severity of such occupational asthma is usu-
ally dependent on the concentration of the allergen and the dura-
tion of exposure. However, because many workers tend to change
their jobs once they have the disease, occupational asthma is
underdiagnosed in the general population. Unfortunately, for
many the symptoms can persist for years after the exposure is re-
moved, thus significantly affecting the health and socioeconomics
of our work force.
EARLY-LIFE ORIGIN OF ASTHMA: WINDOWS OF

PROGRAMMING
Most cases of asthma are now considered to originate in early

life and therefore belong to a long list of complex diseases that are
‘‘programmable’’ by specific early-life environmental expo-
sures.36 The prenatal period (during growth of the airways and de-
velopment of the immune system) is a critical window of
programming. In this regard maternal exposure to ETS, traffic-
related pollutants, viral infection, dust mites, and certain nutri-
tional factors during pregnancy have been shown to increase the
risk of asthma in offspring.33,37-40

The second critical window is during early childhood, espe-
cially during the first year of life (during the expansion of alveoli
and rebalancing of the immune responses). Thus severe lower
respiratory tract viral infections; exposure to airborne environ-
mental irritants (ETS and DEPs), dust mite allergens, and
therapeutics (paracetamol); and deficiency in some nutritional
elements, such as vitamin D,33,38,40-45 during infancy or early
childhood have been shown to increase childhood asthma risk.
In contrast, exposure to dog or cat allergens is associated with pro-
tection from later childhood wheeze in some,46 but not all,47 co-
hort studies. Additionally, exclusive breast-feeding for longer
than 4 months48,49 and intake of probiotics that promote beneficial
intestinal microbiota50,51 have modest protective effects against
wheeze and asthma. Synergistic effects among allergens/irritants
have been observed. For example, exposure during infancy to in-
door combustion-related pollutants has been reported to sensitize
children to dust mite–induced asthma in later childhood.52 This
type of interaction is worthy of further investigation because
most exposures comprise a mixture of allergens or inducers.

Similarly, adult-onset asthma is under early-life influences.53-55

Respiratory tract infections during infancy are associated with
a greater incidence of chronic obstructive lung disease.56,57 Prena-
tal active or passive exposure to tobacco smoke58 and traffic-
related exposure to polycyclic aromatic hydrocarbons (PAHs)59

are associated with low birth weight and very preterm birth,
2 conditions that have positive correlations with adult lung
deficiencies.56,60

Thus it has become clear that most cases of asthma of both
childhood and adult onset originate in early life. What remains
elusive is how exposure in early life can permanently change
one’s susceptibility to asthma throughout life. One proposed
mechanism is Barker’s hypothesis of developmental plastic-
ity,36,61 which contends that during early life, in response to an en-
vironmental disruption (eg, infection, hyponutrition, and ETS)
most bodily organs, through the use of developmental plasticity,
can establish an altered phenotype that is expected to better suit
the needs of later life. Such responses are longer-term adjustments
made by an organ that is based on present guesses about probable
future needs. These adjusted phenotypes are usually beneficial to
the health of the subject. However, exceptions arise when early
guesses do not match later-life demands. A high degree of mis-
match between the ‘‘adaptive trait’’ established in early life and
demands in later life might increase the risk of disease. In the
case of asthma, it has been proposed that exposures to pathogens,
metabolic changes, and other environmental factors during prena-
tal or postnatal life trigger the early airways to undergo a different
course of development, resulting in a phenotype of increased sen-
sitivity to allergens or irritants, hyperresponsiveness, and a
skewed TH2 response.4 These alterations in airway and TH cell
phenotype create a lasting vulnerability to asthma in later life.

The mechanisms underlying environmental reprogramming of
the early airway and T-cell phenotype remain unclear. However, a
growing body of literature now suggests that the link resides in
epigenetics, which is responsible for partitioning and remodeling
of the genome into active and inactive domains and creating long-
lasting changes in transcriptional programs of the airway and TH

cells that favor asthma pathogenesis.62-67
MECHANISMS OF EPIGENETIC REPROGRAMMING
Epigenetics is the study of mitotically heritable changes in

phenotype (alterations in gene expression) that occur without
direct alterations of the DNA sequence.68,69 These epigenetic
changes include methylation of DNA by the covalent addition
of a methyl group to a cytosine residue in a CpG site70; posttrans-
lational modification of the amino acid tails of histones by means
of acetylation, phosphorylation, methylation, sumoylation, or
ubiquitylation71; and aberrant expression of microRNAs (miR-
NAs), each of which is capable of posttranscriptionally regulating
the expression of a cohort of cognate target genes.72 Collectively,
these 3 major epigenetic mechanisms affect interactions of DNA
with transcriptional factors, transcript stability, DNA folding, nu-
cleosome positioning, chromatin compaction, and higher-order
nuclear organization in a manner that determines whether a
gene or a set of genes is silenced or activated and when and where
a gene will be expressed. They therefore play crucial roles in
determining the transcriptional programs of differentiating or
differentiated tissues. Before I discuss examples of early-life
reprogramming of the airways and related immune responses
by environmental agents through epigenetic mechanisms,4,5,25,73

I will briefly outline how these mechanisms can alter gene expres-
sion and hence the phenotype of cells and organs on a long-term
basis.

CpG dinucleotides are underrepresented in the mammalian
genome (1% to 2%) but tend to cluster as CpG islands in gene
promoter regions. Hypermethylation of promoter CpG islands is



FIG 1. DNA methylation and histone modification collaborate in regulating gene expression. DNA

methylation refers to the covalent addition of a methyl group to a cytosine (C) residue in a CpG dinucleotide

(solid circles, methylated cytosine; open circles, unmethylated cytosine). The carboxyl ends of histones

have specific amino acids that are sensitive to posttranslational modifications. These 2 major epigenetic

mechanisms collaborate to package genes in euchromatin (active chromatin) or heterochromatin (silenced

chromatin), a packaging that determines whether a gene or a set of genes is silenced or activated. CpG sites

are underrepresented in the mammalian genome but tend to cluster as CpG islands (CGIs) in gene promoter

regions. Hypermethylation of promoter CGIs is associated with transcriptional silencing (red X) because of

loss of affinity for transcriptional factors (TF) and accessibility by the transcriptional machinery (represented

by Pol II in this figure). The heterochromatin has increased affinity for methylated DNA-binding proteins

(MBPs), which further recruit histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and other

corepressors. Methylated promoters are associated with unique repressive histone markers, which classi-

cally include trimethylation of histone 3 (H3), lysine (K) 9, and H3-K27. Unmethylated promoters are asso-

ciated with gene activation (green arrow). They have reduced affinity for MBPs, increased affinity for histone

acetyltransferases (HATs), and histone marks associated with active chromatin, including acetylated H3-K9

and trimethylated H3-K4. Histone modifications are believed to mediate more rapid responses to environ-

mental influences, whereas DNA methylation provides gene silencing over a longer time frame. A, Acety-

lation; M, methylation; Pol II, RNA Polymerase II.
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commonly associated with transcriptional silencing, possibly
because the methylated promoter has reduced affinity for tran-
scriptional factors74 and increased affinity for methylated
DNA-binding proteins (eg, methyl CpG binding protein 2
[MeCP2], methyl-CpG binding domain protein [MBD] 1,
MBD2, MBD3, and MBD4), which further recruit histone deace-
tyltransferases and other corepressors. Methylated promoters also
are associated with unique repressive histone markers,75 which
classically include trimethylation of histone 3, lysine 9, and his-
tone 3–lysine 27. Conversely, unmethylated promoters are associ-
ated with gene activation, reduced affinity for methylated DNA-
binding proteins, and histone marks associated with active chro-
matin, including acetylated histone 3–lysine 9 and trimethylated
histone 3–lysine 4. Histone modifications are believed to mediate
more rapid responses to environmental influences,4,76,77 whereas
DNA methylation mediates gene silencing over a longer time
frame. Thus the 2 mechanisms work closely in gatekeeping the
active and inactive states of a gene or parts of the genome (Fig 1).

DNA methylation requires the activity of DNA methyltrans-
ferases (DNMTs). DNMT1 facilitates the replication of the DNA
methylation pattern between cell generations (maintenance
methylation), and DNMT3a and DNMT3b mediate de novo meth-
ylation of DNA.78,79 The mechanism of DNA demethylation is
less clear. Loss of binding to methylated DNA-binding proteins
might allow the promoter to enter a transcriptional state. How-
ever, the association of methylated DNA with MBD2 or MBD4
has been proposed to induce active DNA demethylation, a hy-
pothesis currently under active debate.80,81

Histone modifications (marks) are believed to change gene
expression by remodeling the chromatin of the promoter, the
coding region of target genes, or both. They serve to recruit
specific chromatin modeling enzymes (DNMTs and demethyl-
ases) and methylated DNA-binding proteins and shift the position
of the nucleosomes,82,83 thus maintaining either an active or an in-
active transcriptional environment. They are known to transduce
extracellular signals (eg, insulin-like growth factor 184) to activate
genomic events. Histone modifications work conjointly with
DNA methylation to achieve short- and long-term changes in
transcriptional programs through transient or permanent reorga-
nization of the chromatin architecture.85 Histones are modified



J ALLERGY CLIN IMMUNOL

VOLUME 126, NUMBER 3

HO 457
by specific enzymes that include histone acetyltransferases
(HAT), histone deacetylases (HDAC), and histone methyltrans-
ferases.86 Their antagonists hold great promise as epigenetic
pharmaceuticals.

miRNAs function as posttranscriptional regulators of cognate
target gene expression.72 They are a class of small noncoding
RNAs produced from either their own genes or introns/exons of
other genes. They bind to target mRNAs with complete or incom-
plete complementarities, degrade/modify target mRNAs, or both
and modulate protein translation.87 It is now known that one
miRNA can target hundreds of mRNAs and that one mRNA
can be regulated by different miRNAs. Thus although the field
is still in an early stage of development, it has great potential to
reveal a new level of epigenetic regulation.
EPIGENETICS REGULATES THE IMMUNE

RESPONSES ASSOCIATED WITH ASTHMA
Epigenetics is now recognized as a key mechanism underlying

the establishment and maintenance of the TH2 bias in asthmatic
patients.5,88 Exposure to allergens induces an immune response
that triggers the differentiation of a naive TH cell into a TH2
cell, expressing the cytokines IL-4, IL-5, and IL-13, which are re-
sponsible for the allergic response.89 Loss of DNA methylation
and increased association with activating histone marks con-
jointly establish and maintain a euchromatin configuration at
the TH2 locus of TH2 cells, allowing recruitment of the transcrip-
tional machinery to this region for a rapid and coordinated expres-
sion of the TH2 cytokines. The early response is marked by rapid
increases in IL4 expression because the GATA-3 transcriptional
factor binding sites within the first intron of the gene loses CpG
methylation and the IL4 locus gains histone 3–lysine 9 acetylation
and trimethylation of histone 3–lysine 4.90-93 With lineage com-
mitment, additional demethylation occurs in the 59 end of the
gene, which is essential for sustaining a high level of IL-4 expres-
sion.91 In parallel, the expression of IFN-g in TH2 cells is silenced
by repressive histone marks92 and increased promoter CpG meth-
ylation.94,95 In contrast, TH1 differentiation is associated with
methylation of the 39 end of the IL4 locus.91 Furthermore, TH2 po-
larization is associated with loss of IFN-g expression, which is
thought to be mediated by methylation of specific CpGs in its pro-
moter region.94,95 Specifically, methylation of CpG253, an activa-
tor protein 1–binding site in the proximal promoter of IFNG,
results in inhibition of cAMP-responsive element binding protein
1 (CREB) and activating transcription factor 2 (ATF2)/c-Jun
binding to this cis-regulatory element and sustained gene silenc-
ing.95,96 Hence mounting evidence suggests that the development
of a polarized TH2 phenotype is a result of major chromatin re-
modeling brought about by multiple, coregulatory epigenetic
changes on genes regulating TH differentiation.

Moreover, the TH1/TH2 ratio is exquisitely sensitive to histone
acetylation/deacetylation regulation.73 In this regard inhibition of
endogenous HDAC activity with trichostatin A (TSA) can shift
recall responses toward a more TH2-like phenotype by changing
the TH1/TH2 ratios 3- to 8-fold and increasing TH2-associated
(IL-13, 139%; IL-5, 168%) and reducing TH1-associated (IFN-
g, 76%; CXCL10, 47%) recall responses.97 Of significance to
glucocorticoid-resistant asthma, upregulation of class II HDACs
restores steroid responsiveness in the airways.98 Treatment with
inhibitors for both class I and II HDACs, but not those only effec-
tive for class I enzymes, induces Foxp31 production and boosts
the suppressive function of Foxp31 Treg cells on TH2-mediated
allergic response.99 In addition to TH2 polarization, a recent study
has shown that human Treg cells can differentiate into TH17 cells
through epigenetic plasticity that can be modulated by histone/
protein deacetylase activity.100 It has been noted that neutrophilic
asthma might involve TH17 polarization.101 Taken together, these
findings have significant clinical ramifications because new anti-
asthma strategies seeking to target specific HATs/HDACs might
have great utility in the future management of asthma.102

Finally, emerging evidence suggests that miRNAs are involved
in the pathogenesis of immunologic diseases, including
asthma.103 A single nucleotide polymorphism at the 39 untrans-
lated region of HLA-G, an asthma-susceptibility gene,104 was
shown to be a putative target site for 3 miRNAs: miR-148a,
miR-148b, and miR-152.105 A recent study demonstrated that
the inflammatory airway of a lung-specific IL13 transgenic mouse
overexpressed miR-21 and underexpressed miR-1.106 It also re-
vealed that IL-12p35, a predicted target of miR-21 and a cytokine
germane to TH cell polarization, was significantly downregulated
in the murine inflamed airway. In human bronchial epithelial cells
miR-146a expression was found to be upregulated in response to
TGF-b1 plus cytomix (a mixture of IL-1b, IFN-g, and TNF-a)–
induced apoptosis and, it was also found that a mimic for this miR
can upregulate Bcl-XL and signal transducer and activator of tran-
scription 3 (an acute-phase response factor) phosphorylation, im-
prove human bronchial epithelial cell survival, and contribute to
tissue repair and remodeling.107 Furthermore, selective knock-
down of miR-126 expression was shown to suppress the asthmatic
phenotype, resulting in diminished TH2 response, inflammation,
airways hyperresponsiveness, eosinophil recruitment, and mucus
hypersecretion.108 At the molecular level, downregulation of
miR-126 inhibited TH2 polarization by increasing the expression
of POU domain class 2–associating factor 1, which activates the
transcription factor PU.1, leading to loss of GATA-3 expression.
These new findings support the notion that miRNA-based oligo-
nucleotide therapies will be an emerging class of antiasthma
regimens.

In aggregate, multiple epigenetic mechanisms regulate a handful
of asthma-related genes known to initiate and maintain the asthma
phenotype and its symptoms. Table I73,90-92,94-96,97,99,105-108 sum-
marizes these genes and their relevance to the disorder.
ENVIRONMENTAL FACTORS EXERT EPIGENETIC

INFLUENCES ON ASTHMA
Recent findings regarding the regulation of multiple aspects of

asthma pathogenesis by epigenetics raise the fundamental ques-
tion about whether environmental influences on asthma risk or its
manifestations are mediated through similar epigenetic changes
found to contribute to this disorder. Current knowledge of the
effects of environmental agents found to be epigenetically active
and to contribute to the pathogenesis of asthma is summarized
below and in Figure 2 and Table II.108-135
Tobacco smoke
Exposure to tobacco smoke represents a major risk factor for

the development of asthma.136,137 Enhanced sensitization to aller-
gens has been observed in human subjects and laboratory animals
exposed to tobacco smoke. Early-life exposures clearly increase
asthma risk in later life.138 The epigenetic action of tobacco



TABLE I. Asthma-related genes known to be regulated by epigenetic mechanisms

Gene Mechanism of epigenetic regulation Relevance to asthma References

IL4 Demethylation of an intronic sequence that binds

GATA-3

Increases IL-4 secretion in TH lymphocytes 90

IL4 Increase in H3-K9 acetylation and H3-K4

trimethylation

Increases lineage commitment of precursor

TH cells to TH2 cells

92

IL4 Extensive demethylation of the 59 flanking region

of the IL4 promoter

Sustains high levels of IL-4 secretion from TH2 cells 91

IL4 Methylation of the 39 end of the IL4 locus Promotes differentiation of precursor TH cells into TH1 cells 91

IFNG Methylation of an activator protein 1–binding site

in the proximal promoter resulting in reduced

CREB and ATF2/c-Jun binding to this site

Associated with the loss of gene expression and the

establishment of a TH2 polarization phenotype

94-96

IL13, IL5 Increased histone acetylation Increases TH2-associated cytokine expression 73

IFNG, CXCL10 Increased histone acetylation Inhibits TH1-associated recall responses and expression

of these cytokines

97

FOXP31 Class II HDAC inhibitors Increases Foxp31 expression and enhances the

suppressive function of Foxp31 Treg cells on TH2 response

99

HLA-G miR-148a, miR-148b, and miR-152 Targets a single nucleotide polymorphism at the 39

untranslated region of the gene

105

IL13 miR-21, miR-1 Overexpressed in IL13 transgenic mice 106

IL-12p35 miR-21 Downregulates gene expression in murine inflamed airway 106

TGFB miR-146a Might mediate TGF-b plus cytomix–induced apoptosis 107

POU domain class

2 associating factor 1

miR-126 Increases expression of the transcription factor 108

ATF2, Activating transcription factor 2; CREB, cAMP-responsive element binding protein 1.
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smoke can be direct or indirect through the induction of oxidative
stress.

One epigenetic action of tobacco smoke is mediated through
the disruption of HAT/HDAC homeostasis in immune cells of the
airways. A recent study comparing biopsy specimens and bron-
choalveolar lavage alveolar macrophages from healthy nonsmok-
ing subjects and age-matched healthy tobacco smokers found that
tobacco smoke suppressed HDAC2 expression and overall HDAC
activity and enhanced expression of inflammatory mediators,
such as GM-CSF, IL-8, and IL-1b–induced TNF-a.109 Impor-
tantly, tobacco smoke markedly attenuated dexamethasone inhi-
bition of cytokine release in these cells and hence might cause
steroid resistance. Treatment of the macrophages with the
HDAC inhibitor TSA reversed the proinflammatory changes
and glucocorticoid responsiveness in the macrophages, support-
ing the possible usefulness of this class of drug as an adjuvant
for asthma treatment. Because the treatment of a macrophage
cell line with hydrogen peroxide mimicked the effects of tobacco
smoke on HDAC activity and glucocorticoid responsiveness, it
has been suggested that part of the action of tobacco smoke can
be mediated through the induction of oxidative stress. Because
macrophages function to fine tune allergen-induced airway in-
flammation (see above), an epigenetic disruption of their function
likely contributes to asthma and other airway diseases.

In addition to modulating HAT/HDAC activities, tobacco
smoke can exert epigenetic action through alteration of DNA
methylation status in gene promoters or regulatory sequences.

Multiple studies have shown that tobacco smoke induces
promoter hypermethylation of p16 (cyclin-dependent kinase
inhibitor 2A [melanoma, p16, inhibits CDK4; INK4a]), a pur-
ported tumor suppressor involved in cell-cycle regulation in non–
small cell lung cancer cells.110-112

Other lung cancer–related genes whose methylation status can
be affected by smoking include cytochrome P450, family 1,
subfamily A, polypeptide 1 (CYP1A1)113; Ras association
(RalGDS/AF-6) domain family member 1 (RASSF1A)114; and
fragile histidine triad gene (FHIT).115 However, it remains to be
determined whether these epigenetic changes are the result of ex-
posure to tobacco smoke or are pathological changes associated
with carcinogenesis.

A more direct piece of evidence linking tobacco smoke and
DNA methylation can be found in a recent study that reported
hypomethylation of the monoamine oxidase type B (MAOB) pro-
moter in PBMCs of smokers (former and current) compared with
nonsmokers.116 Moreover, the degree of methylation of the
MAOB promoter was inversely correlated with platelet expression
of MAO-B protein. Of significance to our understanding of the
long-term effect of epigenetic changes, hypomethylation of the
MAOB promoter persisted long after (>10 years) the subjects in
this study had stopped smoking.

DNA methylation might also be an epigenetic mechanism that
can explain the lifelong effect of exposure to tobacco smoke in
utero on asthma risk.139,140 Breton et al117 recently examined
DNA methylation status in buccal cells from a cohort of children
born to mothers who did or did not smoke during pregnancy. Chil-
dren exposed to maternal smoking had lower methylation of the
AluYb8 repeat element, indicating global DNA hypomethylation.
In addition, they also identified, using a CpG loci screen, differen-
tial methylation of 8 genes between those children exposed and
not exposed in utero and validated the hypermethylation of 2
genes, AXL receptor tyrosine kinase (AXL) and protein tyrosine
phosphatase, receptor type, O (PTPRO), in the exposed children.
AXL is a receptor tyrosine kinase that promotes antiapoptosis, mi-
togenesis, invasion, and cell survival,141 whereas PTPRO is a pro-
tein tyrosine phosphatase receptor involved in differentiation and
axonogenesis of central and peripheral nervous system neurons
during gestation.142 At this point, it is unclear how these genes
function to alter asthma risk.

However, of special interest to the concept of gene-environment
interaction, differences in smoking-related effects on long



FIG 2. Environmental factor–induced immune cell regulation of allergic airway responses. Inhaled allergens

derived from environmental factors, such as tobacco smoke, PAHs, endotoxin, DEPs, PM, and dust mites, in

the immature or leaky airways are sampled by DCs. The allergen-activated DCs serve to prime the naive

CD41 T cells to differentiate into proinflammatory TH2 cells instead of the infection-fighting TH1 cells in the

T-cell repertoire. The progressive increase in the commitment of CD41 T cells toward a TH2 phenotype is

driven by TH2 cytokines, such as IL-4, IL-5, IL-9, and IL-13, and heightened expression of GATA-3. In parallel,

the TH2 cells shut off the expression of IFN-g and other TH1 cytokines, such as IL-2. In patients with neutro-

philic corticosteroid-resistant asthma, TH17 differentiation is increased. TGF-b–driven naive CD41 T cells dif-

ferentiating into Foxp31 Treg cells confer immune tolerance and dampen allergic responses. Alveolar

macrophages play a dual role in pathogen/allergen elimination and suppression of the responses for airway

repair and remodeling. Allergen-triggered oxidative stress, dietary methyl donors, and nutritional factors,

such as vitamin D, modulate these immune/airway reprogramming events. Cytokines and transcriptional

factors colored red are known to be modulated by epigenetic events. Retinoic acid receptor–related orphan

receptor gt (RORgt), GATA-3, T-box transcription factor (T-bet), and Foxp3 are transcriptional factors pro-

moting the differentiation of the respective T cells.
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interspersed repetitive element-1 (LINE1) methylation were
observed only in children with the common glutathione-
S-transferase mu 1 (GSTM1) null genotype, thus suggesting that
variations in genotype involved in the metabolism of tobacco
smoke can interact with epigenetics to alter asthma risks in
children born to mothers who smoked during pregnancy.
PAHs
PAHs are one of the most widespread classes of pollutants

of the environment and in food.143 They are present in crude
oil, coal, and tar deposits and are derived from incomplete com-
bustion of fossil fuel, oil, garbage, and cigarettes. They are major
components of airborne particulate matter (PM) of urban aerosols
and are widely present in food products, including grains, vegeta-
bles, oils, and fats. PAHs are emitted into the air during the pro-
duction of coke and aluminum. Cooked meats are contaminated
when they are charcoal grilled, roasted, or smoked. Among the
PAHs, benzopyrene (BaP) is often used as a prototype PAH for
many experimental studies.

The association of asthma with particulate air pollutants, DEPs,
the World Trade Center disaster, maternal smoking, and exposure
to ETS, coke manufacturing, and firefighting is well docu-
mented144-150 and might well be related to the PAH component
of these environmental toxicants/pollutants. However, the evi-
dence that indicates that PAHs are a major contributing factor
of asthma is just emerging. This scarcity of information is due
in part to the lack of mechanistic studies and accurate biomarkers
of exposure.

Using a restriction enzyme–based microarray approach, Sadi-
kovic and Rodenhiser118 reported that BaP induced hypomethyla-
tion of a number of genomic repeats and sequence-specific
hypomethylation and hypermethylation changes in 4 breast can-
cer cell lines. The investigators were able to correlate some of
these changes to cell growth and the p53 status of the cell lines.
Unfortunately, they subsequently discovered that this array ap-
proach was compromised by the ability of BaP to form adducts
at CpG dinucleotides, thus inhibiting restriction enzyme activities
and PCR amplification.151 They then turned to investigating the
effect of BaP on H3K9 acetylation at a genome-wide level in
the MCF-7 breast cancer cell line and found that BaP induces hy-
poacetylation and hyperacetylation in genes belonging to net-
works regulating gene expression, DNA replication and repair,
and carcinogenesis.119 Within these networks are genes involved
in the organization and remodeling of chromatin, including
MTA3, HDAC1, ATRX, MBD2, and MBD3. These findings are in
agreement with previous studies reporting that BaP can decrease
global DNA methylation,120 inhibit DNMTs in vitro,121 and



TABLE II. Environmental factors known to lead to epigenetic changes that influence the asthma phenotype

Environmental factors Epigenetic effects Relevance to asthma References

Tobacco smoke Suppresses HDAC2 expression and overall

HDAC activity in macrophages

Enhances the expression of inflammatory mediators

(GM-CSF, IL-8, IL-1b, and TNF-a)

109

Tobacco smoke Induces hypermethylation of the promoter of p16;

CYP1A1, RASSF1A, and FHIT in lung cancer cells

Relevance in asthma unknown 110-115

Tobacco smoke Induces MAOB promoter hypomethylation in PBMCs Might serve as a biomarker of smoking-induced

asthma

116

Maternal tobacco smoke Induces global DNA hypomethylation (AluYb8

but not LINE1) and AXL and PTPRO promoter

hypermethylation in children

Might serve as biomarkers of in utero exposure 117

BaP Induces hypomethylation of a number of

genomic repeats and sequence-specific

hypomethylation and hypermethylation

changes in breast cancer cells

Relevance to asthma unclear 118

BaP Induces H3K9 acetylation at the genome

level, leading to hypoacetylation and

hyperacetylation in genes belonging to networks

regulating gene expression, DNA replication and

repair, and carcinogenesis (including ATRX, MBD2,

MBD3, HDAC1, and MTA3)

Relevance to asthma not known 119

BaP Decreases global DNA methylation, inhibits

DNMTs in vitro, and interferes with

recruitment of methylation machinery

Might affect expression of asthma-related genes 120-123

Maternal PAH exposure

from traffic pollution

Increased maternal exposure associated

with increased hypermethylation of the ACSL3
promoter in umbilical cord blood DNA of offspring

Hypermethylation of ACSL3 promoter in umbilical

cord blood associated with increased asthma

risk in childhood

124

Oxidants Posttranslationally modifies the HDACs and

creates HAT/HDAC stoichiometry imbalance

Contribute to the enhancement of IL-1b–stimulated

inflammatory cytokine production (eg, IL-8, IL-6,

CXCL1, CXCL2, and CXCL3) in the inflamed

airways

125,126

LPS Might be an miRNA-146a target Contributes to LPS priming 127

LPS Drives TLR signaling through Akt1-regulated

expression of let-7e and miR-155

Contributes to macrophage hypersensitivity and

endotoxin tolerance

128

Inhaled DEPs Induce hypermethylation at specific CpGs of

the IFNG promoter and hypomethylation

at the IL4 promoter in splenic CD41 cells

Hypersensitize mice to intranasal Aspergillus

fumigatus exposure

129

PM-10 Increases HAT activity and acetylated histone 4;

remodels the IL8 promoter; action mediated

through the induction of oxidative stress

Increases IL-8 expression and release from human

alveolar basal epithelial cells

130

Exposure of elderly to

ambient black carbon

but not PM2.5

for 4 to 7 d

Induces hypomethylation of LINE1 Might exacerbate asthma in this population 131

Methyl donors and

coenzymes

Affects DNMT activities and prevents aberrant

global hypomethylation of the genome

Deficiencies in methyl donors predisposes to

complex diseases, including asthma

132,133

Maternal diet rich

in methyl donors

Favors lymphocyte maturation into a TH2 phenotype Increases the risk of allergic airway disease

in offspring

134

Maternal folic acid

supplementation

Increases the risk of wheeze and lower

respiratory tract infections in progeny

up to 18 mo of age

Explains developmental reprogramming of

asthma risk

135

Dust mite antigens Induce expression of miRNA-126 and activates TLR4 Increase inflammation, a TH2 response, airway

hyperresponsiveness through suppression

of GATA-3

108

CYP1A1, Cytochrome P450, family 1, subfamily A, polypeptide 1; FHIT, fragile histidine triad gene; H, histone; K, lysine; RASSF1A, Ras association (RalGDS/AF-6) domain

family member 1.
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interfere with recruitment of the methylation machinery.122,123

Although these studies have firmly established an epigenetic ef-
fect for BaP, their direct relevance to asthma remains debatable.

In a recent study124 we identified, using an unbiased screening
method, a novel epigenetic marker for PAH-associated asthma.
Hypermethylation of the acyl-CoA synthetase long-chain family
member 3 (ACSL3) promoter in umbilical cord white blood cells
of children born to mothers with variable but well-documented
levels of PAH exposure was highly correlated with increased ma-
ternal exposure and risk of asthma symptoms before age 5 years.
ACSL3 belongs to the acyl-CoA synthetase long-chain (ACSL)
family of genes that encode key enzymes in fatty acid metabo-
lism.152 It is expressed in lung and thymus tissue.153,154 Thus
hypermethylation of this gene in TH cells or lung tissues is ex-
pected to diminish fatty acid use and b-oxidation energy produc-
tion and possibly influence the phospholipid composition of the
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membranes. Interestingly, ACSL3 is located in 2q36.1, which has
recently been shown to be associated with regions of the asthma-
susceptibility loci in specific populations.155,156

Finally, 2 CpG-rich regions in the promoter of INF-g were
found to undergo hypermethylation when human airway smooth
muscle cells or lung cancer cells were exposed to BaP. INFG pro-
moter in umbilical cord white blood cell DNA was found to asso-
ciate positively with maternal PAH exposure and increased risk of
childhood asthma (Ho, unpublished data). Because silencing of
INFG is directly linked to the development of TH2 polarization,
these findings should provide a new angle to the investigation
of the environmental genetics of asthma.
Microbial infection, inflammation, and oxidative

stress
Both epidemiological and experimental studies have shown

that microbial exposure in early life can protect against asthma
but that exposure in later life predisposes to the disorder.157-160

These contradicting outcomes could be explained by multiple
mechanisms, including developmental plasticity altered during
early life by epigenetic events. The first of such mechanisms
might be related to the well-documented fact that infections
promote the generation of oxidants161,162 and proinflammatory
mediators163 in the airways. These intermediates in turn can
exert epigenetic modifications on transcriptional programs of cy-
tokines. In this regard damages by oxidants are known to trigger
methylation. The formation of hydroxymethylcytosine as a result
of oxidative stress or the generation of halogenated cytosines as a
result of the release of hypochlorous acid from neutrophils or of
hypobromous acid from eosinophils can lead to methylation.164

Thus an increase in oxidants could promote cytosine
methylation-mediated gene silencing that might have long-
lasting effects.

Oxidants and proinflammatory mediators also regulate histone
acetylation/deacetylation balance in the airways.125,126 H2O2 can
alter the histone acetylation and deacetylation balance through
posttranslational modification of HDACs. An imbalance in
HAT/HDAC stoichiometry contributes to the enhancement of
IL-1b–stimulated inflammatory cytokine production (IL-8, IL-
6, CXCL1, CXCL2, and CXCL3) in the inflamed airways. Mod-
ifications in the histone marks associated with gene loci of these
cytokines can produce long-lasting epigenetic effects in their
transcriptional programs.

A second explanation might be related to the biphasic nature of
the response of the innate immune system to endotoxin released
from bacterial cells. Prior exposure of innate immune cells like
monocytes/macrophages to small amounts of endotoxin causes
them to become refractory to subsequent challenges by endo-
toxin, a phenomenon known as endotoxin tolerance. This might
explain why endotoxin exposure is associated with protection
from asthma in some studies39,125,165 but with the development or
exacerbation of asthma in others.166 An important mechanism un-
derlying this endotoxin tolerance is epigenetic reprogramming of
IL-1b–mediated TNF-a release in these immune cells. Exposure
to endotoxin or LPS induces chromatin remodeling of the proin-
flammatory gene IL1B promoter nucleosome and epigenetic
gene silencing of TNFA that involves aberrant retention of the
heterochromatin-binding protein 1a, altered histone modifica-
tions, and loss of nuclear factor k light polypeptide gene enhancer
in B-cells 1 (NF-kB) RelA/p65 binding to its promoter.167-169
A recent study further reported upregulation of miRNA-146a as
a plausible mechanism of LPS priming.127 Another study demon-
strated that Akt1-regulated expression of let-7e and miR-155
might be responsible for tuning the LPS-driven Toll-like receptor
(TLR) signaling in macrophage sensitivity and tolerance to
endotoxin.128

In summary, the relationship between microbial exposure and
asthma is complex; the intricate interplays among infection,
inflammation, oxidative stress, and endotoxin tolerance likely
involve multiple levels of epigenetic regulation.
PM, DEPs, and other outdoor pollutants
Epidemiological studies have shown that PM, DEPs, and other

outdoor airborne pollutants are associated with adverse respira-
tory health effects, including asthma.2,170,171 Several of these
have been shown to exert their actions through epigenetics.

DEPs are one of the major components of PM. In a murine
asthma model a 3-week exposure to inhaled DEPs was found to
hypersensitized mice to intranasal exposure to Aspergillus fumi-
gatus. The combined treatment increased IgE production and in-
duced hypermethylation at CpG(245), CpG(253), and
CpG(2205) sites of the IFNG promoter and hypomethylation
at CpG(2408) of the IL4 promoter in DNA from splenic CD41

cells.129

DEPs or PM can also exert their action in the airways through
the induction of oxidative stress.172 Treatment of A549 cells (ad-
enocarcinomic human alveolar basal epithelial cells) with either
PM-10 or H2O2 increased IL-8 expression and release, which
was augmented by cotreatment with TSA, an HDAC inhibitor,
but blocked by cotreatment with an antioxidant. Both PM-10
and H2O2 treatment increased HAT activity and the level of acet-
ylated histone 4 and remodeled the IL8 promoter region. These
data suggest that the action of PM-10 is mediated by oxidative
stress, which in turn triggers histone acetylation–induced remod-
eling of the chromatin associated with cytokine release in the
lungs.130

Baccarelli et al131 found that increased exposure of elderly par-
ticipants (718) to ambient particulate pollutants for a short duration
(4 hours to 7 days) was associated with DNA hypomethylation of
LINE1, but not Alu, repetitive elements in their blood DNA sam-
ples. Interestingly, black carbon, but not PM2.5, showed this asso-
ciation. These findings lay the groundwork for future investigation
of whether these global methylation changes or alterations in spe-
cific genes are linked to exposure-related health outcomes.
Diet and nutritional factors
In mammalian cells, during mitosis, the maintenance of the

fidelity of the methylation pattern in the newly synthesized DNA
strand is dependent on the availability of diet-derived methyl
donors and cofactors required for the synthesis of S-adenosylme-
thionine. The concentration of S-adenosylmethionine affects
DNMT activities and prevents aberrant global hypomethylation
of the genome, which could be a cause of congenital diseases and
aging.173 In agouti mice a deficiency in methyl donors or their co-
enzymes, such as choline, betaine, folic acid, and vitamin B12, in
utero predisposed the offspring to many complex diseases.132,133

However, the evidence demonstrating that nutritional factors can
directly influence epigenetic programming of T cells and airway
tissues is still limited.
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A recent report found that exposure of pregnant mice to a diet
rich in methyl donors favored lymphocyte maturation into a TH2
phenotype and increased the risk of allergic airway disease in the
offspring.134 The maternal diet induced methylation changes in
82-gene loci in the offspring. Among these genes, Runt-related
transcription factor 3 (Runx3), a gene known to suppress allergic
airway disease, was found to be hypermethylated, along with con-
cordant transcriptional silencing of Runx3 in progeny. These find-
ings demonstrate that dietary factors can modify asthma risk
through epigenetic mechanisms during a susceptible period of
developmental reprogramming.3,4 They are in agreement with
findings from a large-scale cohort study, the Norwegian Mother
and Child Cohort Study (>32,000 children), which showed that
maternal folic acid supplementation increased the risk of wheeze
and lower respiratory tract infections in progeny up to 18 months
of age.135 In aggregate, these findings call into question the safety
of supplementing maternal diets with methyl donors or their
coenzymes.

A growing body of evidence now suggests a protective effect of
vitamin D against asthma,174-176 but little is known about whether
its action is mediated through epigenetics. This line of investiga-
tion should prove promising in the future because a combination
of vitamin D with an epigenetic therapy might be highly effective.
Dust mites and other indoor allergens
An emerging concept for a mechanism potentially causing

asthma is that the innate immune system inappropriately senses
allergens as foreign and dangerous and responds with a pro-
grammed adaptive TH2 immune response. TLRs differentially
sense microbial and viral bioproducts and act as sentinels for the
activation of innate host defense pathways. LPS, a cell-wall com-
ponent of gram-negative bacteria, activates cells through TLR4
and the common TLR adaptor protein myeloid differentiation pri-
mary response gene 88, resulting in activation of transcription and
proinflammatory pathways. LPS is also a prominent constituent of
asthma-inducing house dust mite allergens and can instruct the
immune response to inhaled antigen to generate TH2 responses.

TLRs act as sentinels for activating innate host defense in
response to inhaled antigens and play a pivotal role in program-
ming a TH2 immune response. Exposure to house dust mite anti-
gens activates TLR4 and increases the expression of a unique set
of miRNAs that includes miRNA-16, miRNA-21, and miRNA-
126.108 Selective blockade of miRNA-126 leads to amelioration
of asthma symptoms and a diminished TH2 response, inflamma-
tion, and airway hyperresponsiveness through an miR-126–medi-
ated suppression of GATA-3 expression. These data open the door
for future asthma therapies based on miRNAs or their antagomirs.

The major indoor allergens include arthropod allergens, animal
dander mammalian allergens (from pets or pests), and fungal
allergens. Nevertheless, no information is available on their
epigenetic action in the airways or asthma-related immune
systems. Future research on how indoor allergens program
airways and the immune system through epigenetics is of critical
importance because modern living involves spending nearly 90%
of time indoors.
WHAT ARE THE GAPS IN THE DATA?
First, can we identify unique and specific epigenetic marks that

are linked to each allergen or environmental inducers of asthma?
Can these epigenetic changes be developed into exposure bio-
markers or disease predictors? Can epigenetic biomarkers with
high sensitivities and specificities for an environmental factor be
used for formulating regulatory policies? How much overlap do
environmental epigenetic biomarkers have among different
classes of asthma inducers or triggers? Can environmental genet-
ics contribute to our fundamental understanding of asthma’s
etiology?

Second, when are the critical developmental periods of airway
and immune cell programming by environmental factors for
childhood and adult asthma? How long will the epigenetic
memories last, and are they reversible by later-life events, includ-
ing removal of the environmental inducers, the use of epigenetic
disruptors (eg, dietary methyl donors), and epigenetic therapeutics,
including HDAC inhibitors and miRNA antagomirs?

Third, once an environmental inducer is removed, will its
presumed long-lasting epigenetic action gradually disappear?
Can this reversal be accelerated through the adoption of lifestyle
changes, treatment with targeted therapies, or both? In this regard
the permanency of early-life programming and the effectiveness
of later-life modifiers need to be understood.

Fourth, how can environmental epigenetics explain cosensiti-
zation between 2 or more classes of allergens? Can it explain
remission, tolerance, and treatment resistance? More importantly,
can it be used to predict individual or population-based variability
to susceptibility or treatment? In this regard the identification of
susceptible subjects or populations by means of epigenotyping
will provide new measures for disease surveillance, prevention,
and management. Furthermore, identification of the environmen-
tal culprit for a subject’s asthma could lead to personalized
management of the disease. If this can be extended to exposed
populations, such as schoolchildren, the elimination of the irritant
or allergen in their environment will have significant public health
ramifications.

Fifth, can epigenetic marks in surrogate tissues, such as buccal
cells, cord blood, amniocentesis fluid, and skin cells, be used to
predict the pathophysiological changes in the target tissues, such
as the airway and the immune cells? This question is critically
important for advancing epidemiologic studies in large cohorts,
especially those studying childhood asthma.
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